

zafing

Objective measurement of physical behaviour in rehabilitation research and clinical practice

Hans Bussmann

Associate Professor Dept. of Rehabilitation Medicine, Erasmus MC Rotterdam

Short Curriculum Vitae

	 Physical therapy & Human Movement Sciencies 	Hans Bussmann
1998	PhD thesis: "Ambulatory monitoring of mobility- related activities in Debabilitation Medicine"	
2008	 first ICAMPAM (International Conference on 	
	Ambulatory Monitoring of Physical Activity and	F
	Movement	Ambulatory monitoring
2015 -	 (Vice-) president of ISMPB (International Society 	in rehabilitation medicine
	on Measurement of Physical Behaviour)	
2007 - 2017	 Board member of the Society of Ambulatory 	ICMDD
	Assessment	International Society for the Measurement of Physical Beha

senior researcher / associate professor Erasmus MC research theme *"Physical behaviour and fitness of people with chronic conditions"*

- in collaboration with Rijndam Rehabilitation

Presentation

- 1. Rehabilitation Medicine
- 2. Physical Activity & Physical Behaviour
- 3. Measurement
- 4. Application in clinical research & practice
- 5. Considerations & conclusions

Presentation

- 1. Rehabilitation Medicine
- 2. Physical Activity & Physical Behaviour
- 3. Measurement
- 4. Application in clinical research & practice
- 5. Considerations & conclusions

Rehabilitation Medicine

- medical specialty
- people with (chronic) disabling conditions
- multidisciplinary treatment
- focus on the consequences of diseases and optimizing patient functioning
 - e.g. spasticity treatment, exercise, mobility aids, adjustments to home, psychological treatment,..

International Classification of Functioning, Disability, and Health (ICF, WHO)

Functional diagnosis Treatment Assessment & research

International Classification of Functioning, Disability, and Health (ICF, WHO): example

Rijndam revalidatiecentrum

Presentation

- 1. Rehabilitation Medicine
- 2. Physical Activity & Physical Behaviour
- 3. Measurement
- 4. Application in clinical research & practice
- 5. Considerations & conclusions

\rightarrow Physical activity

Physical activity

"any bodily movement produced by skeletal muscles that requires energy expenditure"

> **Physical** Health \downarrow activity \downarrow

Physical activity and prevention of health problems

Erasmus MC

zafing

Physical activity treatment and effects on health

E.g. positive effects of physical activity programs on:

- blood pressure
- body fat mass
- blood sugar markers (HbA1)
- prognosis angina pectoris
- dyspneu in COPD
- anxiety and stress
- depression

Erasmus MC

zam

Physical activity & physical behaviour

- HOWEVER: not only health in terms mortality, morbidity, health markers important target for physical activity
- Other targets e.g.
 - fatigue
 - independent living
 - pain
 - fall risk
 - being able to perform activities more easily
 - post-surgery complications
 - •

Physical activity & physical behaviour

AND: not (only) levels of physical activity and/or EE important

but (also):

- sedentary behaviour
 - amount and distribution of "sitting"
- body postures and movements
 - e.g. upright position
- use of the arm in daily life
 - e.g. reaching movements in daily life
- quality of performance
 - e.g. stasbility of gait, speed of gait
- sleep

Physical activity & physical behaviour

→ Physical Behaviour

"the body postures, movements and physical activities people perform in their daily life"

Physical activity and prevention of health problems

Erasmus MC

zafing

Presentation

- 1. Rehabilitation Medicine
- 2. Physical Activity & Physical Behaviour
- 3. Measurement
- 4. Application in clinical research & practice
- 5. Considerations & conclusions

A bit of history....

Early Step Counter, 1667

Museum of the History of Science (Oxford University)

A bit of history....

Rijndam revalidatiecentrum

Basic principle

Rijndam revalidatiecentrum

Erasmus MC zafing

Accelerometry: working principle

Not only levels of physical activity

Orientation Physical sensor / body activity segment **Movement** patterns **Movement** (quality) Levels of Accelerometer **Accelerations** physical activity (counts) Gyro's, MFS Energy expenditure

Erasmus MC

Technological developments (Rotterdam)

Presentation

- 1. Rehabilitation Medicine
- 2. Physical Activity & Physical Behaviour
- 3. Measurement
- 4. Application in clinical research & practice
- 5. Considerations & conclusions

Application of wearables in clinical research & practice

- descriptive & explorative studies
- insight in determinants and effects
- PB monitoring in treatment
- evaluation of interventions
- improved interpretation other (non PB) data

Descriptive & explorative studies

About questions such as:

- "Is there any Physical Behaviour issue?"
- "What is the course / recovery of Physical Behaviour?"

Objectively measured levels of PA in chronic conditions

Berg-Emons HJG van den, Bussmann JB, Stam HJ. Accelerometry-based activity spectrum in persons with chronic physical conditions. Arch Phys Med Rehabil 2010;91:1856-61.

Erasmus MC

zalus

Objectively measured levels of PA in chronic conditions

Berg-Emons HJG van den, Bussmann JB, Stam HJ. Accelerometry-based activity spectrum in persons with chronic physical conditions. Arch Phys Med Rehabil 2010;91:1856-61.

Erasmus MC

zalus

Recovery of physical activity after spinal cord injury

Van den Berg et al. A prospective study on physical activity levels after spinal cord injury during inpatient rehabilitation and the year after discharge. Arch Phys Med Rehabil. 2008 Nov;89(11):2094-101.

Vissers et al. Barriers to and facilitators of everyday physical activity in persons with a spinal cord injury after discharge from the rehabilitation centre. J Rehabil Med. 2008 Jun;40(6):461-7.

Daily life arm-hand use in people with chronic stroke

Michielsen ME, Selles RW, Stam HJ, Ribbers GM, Bussmann JB. Quantifying Nonuse in Chronic Stroke Patients: A Study Into Paretic, Nonparetic, and Bimanual Upper-Limb Use in Daily Life. Arch Phys Med Rehabil. 2012;93:1975-81

Insight in determinants and effects

About questions such as:

- "Which factors contribute to (changes in) physical behaviour outcomes?"
 - e.g. result fitness programs in higher levels of physical activity?
- "Where does (changes in) physical behaviour result in?"

Erasmus MC Cafung

Recovery after stroke: performance vs. capacity

Physical Behaviour and Fatigue in MS patients

Erasmus MC

zalus

- monitoring
- feedback
- exercise

Application in treatment: Monitoring

Recovery arm-hand use after stroke Profits study

Fanchamps et al. submitted

m revalidatiecentrum

Application in treatment: Feedback

Systematic review

• "objective PB feedback contributes to changing PB"

Experimental			C	Control			Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl	
Dorsch 2015	16.6	14.3	78	15.1	13.1	73	11.0%	0.11 [-0.21, 0.43]		
Frederix 2015	11,205	894	32	7,551	652	34		Not estimable		
Guiraud 2012	137.2	87.5	19	45.7	43.4	10	1.6%	1.17 [0.34, 2.01]		
Hornikx 2015	2,628	1,980	12	2,570	1,297	12	1.7%	0.03 [-0.77, 0.83]		
Kaminsky 2015	8,005	1,874	10	5,906	1,877	8	1.1%	1.07 [0.06, 2.08]		
Kawagoshi 2015	93.6	31.5	15	42.3	84.9	12	1.8%	0.81 [0.02, 1.61]		
Mansfield 2014	6,195	4,112	29	4,435	4,347	28	4.1%	0.41 [-0.11, 0.94]	+	
McMurdo 2010	143,127	61,453	68	121,270	61,453	68	9.7%	0.35 [0.01, 0.69]		
Moy 2015	3,922	2,491	133	3,200	2,489	68	13.0%	0.29 [-0.00, 0.58]		
Nimwegen 2013	584	256	273	483	181	267	38.3%	0.45 [0.28, 0.62]		
Nolan 2016	82	74	63	90	94	59	8.9%	-0.09 [-0.45, 0.26]		
Peel 2017	24.58	1.46	128	17.53	1.5	177		Not estimable		
Shoemaker 2017a	2.7	0.6	6	3.3	0.27	4	0.6%	-1.08 [-2.48, 0.32]		
van der Weegen 2015	48.16	23.8	52	39.61	19.5	65	8.3%	0.39 [0.03, 0.76]		
Total (95% CI) 758				674	100.0%	0.34 [0.23, 0.44]	•			
Heterogeneity: $Chi^2 = 21.46$ df = 11 (P = 0.03); $l^2 = 49\%$										
Test for overall effect: $7 = 6.27$ (P < 0.00001)										
Control group Experimental group									Control group Experimental group	

Braakhuis et al. submitted.

Rotterdam: physical behaviour feedback devices

Erasmus MC

OPTICARE (OPTImal CArdiac REhabilitation

Ter Hoeve et al. Changes in phyiscal activity and sedentary behavior during cardiac rehabilitation. Arch Phys Med Rehabil 2017.

Upper limb use feedback monitor: Attractif project

Erasmus MC

zafing

Application in treatment: (at home) exercise

Voorkom & Herstel project

- body fixed wearables to be used in virtual reality
 - e.g. training of reaching movements in stroke

Erasmus MC

OPTICARE results

- Mainly effective for outcome on which patient received feedback (steps)
- Aftercare suboptimal: exclusive focus on physical behaviour needed?
- General information on sedentary behaviour insufficient

Ter Hoeve et al. Changes in phyiscal activity and sedentary behavior during cardiac rehabilitation. Arch Phys Med Rehabil 2017.

Spinal cord injury: regular care + lifestyle intervention + Erasmus MC exercise vs. regular care

Nooijen CF et al. A behavioral intervention leads to a more active lifestyle in persons with subacute spinal cord injury: a randomized controlled trial. Journal of Physiotherapy. 2016

Erasmus MC

Improved measurement & interpretation of other (non PB) data ------

Amputees: physical behaviour & physiological strain

Bussmann JBJ, Schrauwen H. Stam HJ. Daily physical activity and heart rate response in people with a unilateral traumatic transtibial amputation. Arch Phys Med Rehabil 2008;89:430-4.

Erasmus MC

zalus

Stroke: stress and mental workload

- Measurement of stress/mental workload:
 - Imec sensors & analysis
 - electronic diaries (EMA)
- Physical behaviour
 - Activ8 (body postures & movements)

- Development and validation of stress models that include the posture & movement data
- linking physical behaviour data to reported stress levels

Brands et al. submitted; Bussmann et al. to be submitted

Presentation

- 1. Rehabilitation Medicine
- 2. Physical Activity & Physical Behaviour
- 3. Measurement
- 4. Application in clinical research & practice
- 5. Considerations & conclusions

Many significant future technological developments

- Increased application in rehabilitation
 - remote "monitoring" ("health check")
 - application of wearables in large cohort/ surveillance studies
 - big data

advanced statistical analyses and modelling

Erasmus MC

zamo

Objectively measured PB is a unique domain of functioning

- ightarrow include PB measurements in research and clinical care
- ightarrow consider carefully the component of PB you're interested in

Physical Behaviour really is "behaviour"

- still the case when measured with wearables!
 - variability
 - difficult to change

 \rightarrow challenge: how to change physical behaviour most effectively

Still much unknown about determinants & effects

- Example: sedentary behaviour
 - Is sitting really an additional risk factor?
 - for what?

.

- for which sitting outcome?
- what are the underlying mechanisms?
- what are the dose-response relationships?

→ importance of basic/fundamental research

Measurement issues

...

Fanchamps et al. Gait & Posture

- Results in: no pooling of data; problems in interpreting results; no comparison between studies
- \rightarrow importance of standardization

Erasmus MC

zam

Design of research

- Changes of / improvements in designs, e.g.
 - context information
 - within-subject vs. between-subject approaches

Implementation & application in care

- is a difficult process
 - requires specific (implementation) expertise
 - use of technology: "believers vs. non-believers"
 - other patient problems important too (or more important)
 - problems patient specific (tailored approach required)
 - between-therapist differences
 - PB outcomes: sometimes too much and/or too difficult to interpret
 - context info is missing

