Machine Learning for Sensory Data

MARK HOOGENDOORN

VRIJE UNIVERSITEIT AMSTERDAM DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITE

Faculty of Science

OUTLINE

- Health and sensor
- Machine learning: what is it?
- Machine learning for sensory data
 - > With example of a sensory dataset
- A case studies we have done:
 - > Mood prediction
- Conclusions

HEALTH AND SENSORY DATA

- Huge increase is seen in data collected about health and wellbeing
- Health data collected in various ways:
 - > By medical staff (electronic medical records)
 - > By smart device sensors (wearables, e.g. smart phone, smart watch)
 - > By the people (prompts on your mobile phone, social media, etc.)
- On top, smart devices can easily be used as a mechanism for health interventions
 - > Providing supporting messages
 - > Providing exercises

3

ELECTRONIC MEDICAL RECORDS

- Some data about Electronic Medical Records¹:
 - > Only in the US (in 2010) EMR's contained 150 exabytes of data
 - > Prospected to become yottabytes (10²⁴) in the very near future
 - > Large part of the data is unstructured (some say 80%), think of free text notes, medical images, etc.

MOBILE HEALTH

Mobile health¹:

Over 100,000 mobile apps in the iTunes store alone (!)²

MACHINE LEARNING FOR HEALTH

- Traditional methods from the medical/health domain:
 - > Cannot handle the huge amounts of data
 - > Are hypothesis driven and cannot find new unexpected results
 - > Cannot cope with unstructured data
 - > Do not allow for tailoring therapies towards individuals (*personalization*)
- Machine learning can help here!
- My research is devoted to development of machine learning techniques for:
 - > Predictive modeling for health (predicting health states)
 - > Personalization for health (tailoring interventions)

MACHINE LEARNING

- Machine learning:
 - Machine learning is to automatically identify patterns from data"
 - * "A computer program is said to learn from experience E with respect to some class of tasks T and performance P, if its performance at tasks in T improves with E." (Mitchell)
- Data Mining (DM) is the whole process from data to insights (including machine learning as a step)

MACHINE LEARNING TASKS

- What are machine learning tasks?
 - Supervised learning is the machine learning task of inferring a function from a set of labeled training data
 - In unsupervised learning, there is no target measure (or label), and the goal is to describe the associations and patterns among the attributes
 - > Reinforcement learning tries to find optimal actions in a given situation so as to maximize a numerical reward that does not immediately come with the action but later in time.

SUPERVISED LEARNING

- Supervised learning approaches learn using a labeled dataset:
 - > "Regular" machine learning algorithms:

WHAT STEPS ARE NEEDED TO APPLY MACHINE LEARNING SUCCESSFULLY¹¹?

Table 1 Side-by-side comparison of the major existing KDDM models						
Model	Fayyad <i>et al.</i>	yyad et al. Cabena et al.		Anand & Buchner CRISP-DM		Generic model
Area	Academic	Industrial	Academic	Industrial	Academic	N/A
No of steps	9	5	8	6		6
Refs	(Fayyad et al., 1996d)	(Cabena et al., 1998)	(Anand & Buchner, 1998)	Shearer, 2000) Cios <i>et al.</i> , 2000)		N/A
Steps	1 Developing and Understanding of the Application Domain	1 Business Objectives Determination	1 Human Resource Identification 2 Problem Specification	1 Business Understanding	Understanding the Problem Domain	1 Application Domain Understanding
	2 Creating a Target Data Set	2 Data Preparation	3 Data Prospecting 4 Domain Knowledge Elicitation	2 Data Understanding	2 Understanding the Data	2 Data Understanding
	3 Data Cleaning and Preprocessing		5 Methodology Identification	3 Data Preparation	Preparation of the Data	3 Data Preparation and Identification of DM
	4 Data Reduction and Projection		6 Data Preprocessing			Technology
	5 Choosing the DM Task					
	6 Choosing the DM Algorithm					
	7 DM	3 DM	7 Pattern Discovery	4 Modeling	DM	4 DM
	8 Interpreting Mined Patterns	4 Domain Knowledge Elicitation	8 Knowledge Post-processing	5 Evaluation	Evaluation of the Discovered Knowledge	5 Evaluation
	9 Consolidating Discovered Knowledge	5 Assimilation of Knowledge		6 Deployment	Using the Discovered Knowledge	6 Knowledge Consolidation and Deployment
	•	•				•

WHICH STEP TAKES MOST TIME?

Figure 1 Relative effort spent on specific steps in the KDDM process

EXAMPLE WEARABLES DATASET

Let us look at an example dataset from some wearables

HOW DO WE LEARN FROM THIS DATA?

• We consider the following loop³:

- What is an outlier?
 - > An outlier is an observation point that is distant from other observations
- Causes?
 - > Measurement error (a person with a heart rate of 400)
 - Variability (a person trying to push his limits with a heart rate of 190)

- Difference between measurement and variability outlier?
 - > Former generated by another mechanism
- How to remove?
 - > Domain knowledge (heart rate cannot be over 220)
 - > Without domain knowledge (machine learning focus)
- Have to be cautious as you do now want to remove valuable information

- Lot of different approaches:
 - > Distribution based (we assume a certain distribution of the data)
 - > Chauvenet's criterion, mixture models, ...
 - Distance based (we only look at the distance between data points)
 - > Simple distance based, local outlier factor, ...

Example outcome:

Example dataset we have now:

Acc. x	Асс. у	Acc. z	Activity
-0.34	+3.45	-3.33	walking
+3.12	+3.14	+3.14	walking
-0.34	+0.34	0.45	walking
+6.54	+0.45	-5.43	running

- Would we able to learn properly?
 - > Nope, we need better features/variables!

- We need to learn based on patterns over time
- E.g. take the mean or SD over the last x time points points acc phone x 15 10 5 0 -5 -10acc_phone_x_temp_mean_ws_20 acc_phone_x temp mean ws 120 acc phone x temp mean ws 1200 10 5 0 -5 -10acc phone x temp std ws 20 acc phone x temp std ws 120 acc phone x temp std ws 1200 8 6 4 2 labelOnTable labelSitting labelWashingHands labelWalking labelDriving labelEating labelRunning + + labelStanding × 1.0 0.8 0.6 0.4 0.2 0.0 **\/||** 18:45 19:15 19:30 19:45 20:15 18:30 19:00 20:00 20:30 time

New dataset

Acc. x mean	Acc. y mean	Acc. z mean	Activity
Maan	Maan	Maan	rupping
previous 3 + current time point	previous 3 + current time point	previous 3 + current time point	running

- We need to learn based on patterns over time
- We can also look at the frequency of the signal (Fourier tr.)

LEARNING FROM THIS DATA

- Let's apply some machine learning algorithms
- We are going to learn how to predict the activity based on all other sensory data
- We are going to set aside part of the dataset as an independent test set
- How accurate would we be able to predict this?
 - > < 50%
 - > 50 75%
 - > 75 90%
 - > > 90%

LEARNING FROM THIS DATA

We try different algorithms (no time for details, sorry)

LEARNING FROM THIS DATA

- Is is always this good?
- No, definitely not:
 - > Dataset of a single person
 - > Limited time
 - > Limited examples of activities
- Still, an accuracy above 90% is typical for recognizing activity, also for more challenging cases
- More and more algorithms do not require the identification of features, but learn these temporal features themselves
 - > E.g. LSTM (for Long Short Term Memory Networks)

PERSONALIZATION

Int 4 depression

E-COMPARED

Mobile intervention with various therapeutic modules (cognitive behavior therapy, activity scheduling, exercise therapy, etc.)

27 Machine Learning for Sensory Data – Mark Hoogendoorn

We have collected the following data:

Abbreviation	EMA question	
Mood	How is your mood right now?	
Worry	How much do you worry about things at the	
	moment?	
Self-Esteem	How did you sleep tonight?	
Sleep	How much have you enjoyed the day?s activities?	
Activities done	How good do you feel about yourself right now?	
Enjoyed activities	To what extent have you carried out enjoyable	
	activities today?	
Social contact	How much have you been involved in social	
	interactions today?	

- 49 patients, over 70 days
- Want to predict mood per individual:

- We want to apply the same approach as has been explained before (summarize the data over days)
- What window size is optimal? We try to find this per measurement
- Learn per patient, within the windows we take the mean, standard deviation, and the trend
- We perform the following experiments:

Condition	Aggregation Intervals	Solutions per Participant
CC1	< 1, 1, 1, 1, 1, 1 >	Fixed
CC2	< 2, 2, 2, 2, 2, 2, 2 >	Fixed
CC3	< 3, 3, 3, 3, 3, 3, 3 >	Fixed
CC4	< 4, 4, 4, 4, 4, 4 >	Fixed
EC3	Random Sampling	Best of 300
EC4	Genetic Algorithm	Best of 300
		(10 gen * 30 pop)

Results (MSE):

Condition	Training Set		Validation Set		Test Set	
	MSE	SD	MSE	SD	MSE	SD
CC1	1.30	0.05	6.09	0.73	8.18	1.09
CC2	0.91	0.05	7.25	1.29	9.82	1.87
CC3	0.85	0.04	8.98	1.17	9.75	1.80
CC4	0.78	0.04	10.17	1.36	10.79	2.07
EC1	0.94	0.05	2.22	0.32	6.68	1.40
EC2	0.93	0.05	2.15	0.31	7.60	1.38
			1		1	1

Becomes significantly better

• Example patient:

INTEGRATE PREDICTIONS IN SYSTEM

We have developed an approach for depression (knowledge driven personalization):

WE PROVIDE TAILORED FEEDBACK

Reasoning module:

33 Machine Learning for Sensory Data – Mark Hoogendoorn

PERSONALIZATION/FEEDBACK

- Communication generation: send appropriate feedback
- Types of feedback:
 - > Feedback to the patient
 - > Information permanently available via the website
 - > Direct information via mobile phone
 - > Reminders for therapeutic activities
 - > Motivational messages (based on predictive models)
 - > Weekly feedback about progress (based on predictive models)
 - > Therapeutic advice (based on predictive models)
 - > Feedback to GP
 - > Permanently available via website
 - Suggestions about therapy change (based on predictive models)
 - > Warning in case of very low mood levels

SUMMARY

- Machine Learning for Health poses a lot of challenges to generate accurate models
- Wearables pose interesting challenges to create accurate predictive models
- Feature engineering is crucial for some case
- Personalization is the next step
- Lots of developments seen now that focus on end-to-end learning, but: lack of insight

THANKS (NOT COMPLETE)

Former PhD students/Junior researchers

Other collaborators for presented research (not exhaustive)

