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HEALTH	AND	SENSORY	DATA	

§  Huge	increase	is	seen	in	data	collected	about	health	and	
wellbeing	

§  Health	data	collected	in	various	ways:	
>  By	medical	staff	(electronic	medical	records)	

>  By	smart	device	sensors	(wearables,	e.g.	smart	phone,	smart	watch)	

>  By	the	people	(prompts	on	your	mobile	phone,	social	media,	etc.)	

§  On	top,	smart	devices	can	easily	be	used	as	a	mechanism	for	
health	intervenAons	
>  Providing	supporAng	messages	

>  Providing	exercises	

>  ……	
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ELECTRONIC	MEDICAL	RECORDS	

§  Some	data	about	Electronic	Medical	Records1:	
>  Only	in	the	US	(in	2010)	EMR’s	contained	150	exabytes	of	data	

>  Prospected	to	become	yoZabytes	(1024)	in	the	very	near	future	

>  Large	part	of	the	data	is	unstructured	(some	say	80%),	think	of	free	text	
notes,	medical	images,	etc.	
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MOBILE	HEALTH	
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B. Translational Genomics

Although comprehensive genotyping is still relatively recent,
it has a high potential for genetic stratification in patient screen-
ing, for instance, in the case of factors arising from genotyp-
ing, such as high-risk DNA mutations [55], milk and gluten
intolerance, and muscovisciosis. Genetics combined with phe-
notypic information provided by EHR may help to provide
greater insights into low penetrant alleles [56]. For example, it
is well known that mutations of fibrillin 1 (FBN1) cause MFS.
Nevertheless, the aetiology of the disease leads to marked clin-
ical variability of MFS patients of the same family as well as
different families [57]. Combining genetic tests of FBN1 and a
series of related genes (TGFBR1, TGFBR2, TGFB2, MYH11,
MYLK1, SMAD3, and ACTA2) will help to screen out patients
who are more likely to develop aortic aneurysms that lead to dis-
sections [58]. Further studies on these high-risk patients based
on morphological images of the aorta may provide insight into
the rate of disease development.

Another potential area for translational genomics is to study
the gene networks of different syndromes of the same person in
order to better understand how these syndromes are interrelated.
For example, this has been used to study different genes on chro-
mosome 21 (HSA21) and their role in Down’s Syndrome (DS),
as well as to understand the underlying reason why nearly half
of DS patients exhibit an overprotection against cardiac abnor-
malities related to the connective tissue [59]. One hypothesis is
based on the recent evidence that there is an overall upregulation
of FBN1 in DS (which is normally down regulated in MFS) [59].
The construction of genetic networks will, therefore, provide a
clearer picture of how these syndromes are related. By under-
standing the gene networks of the related syndromes, it may be
possible to provide specific gene therapy for the related diseases.

C. OMICS and Large-Scale Databases

In addition to the Human Genome Project, several large-scale
biological databases launched recently will further facilitate the
study of disease mechanisms and progressions, particularly at
the system level as outlined in Fig. 5. The Research Collabora-
tory for Structural Bioinformatics Protein Data Bank [60], [61]
is a worldwide archive of structural data of biological macro-
molecules, providing access to the 3-D structures of biological
macromolecules, as well as integration with external biological
resources, such as gene and drug databases [62]. ProteomicsDB
[63] is another example, encompassing mass spectrometry of the
human proteome acquired from human tissues, cell lines, and
body fluid to facilitate the identification of organ-specific pro-
teins and translated long intergenic noncoding RNAs, with due
consideration of time-dependent expression patterns of proteins
[63].

Parallel to these developments, the Human Metabolome
Database [64] consists of more than 40 000 annotated metabo-
lites entries in the latest version released in 2013. It provides
both experimental metabolite concentration data and analyses
through mass spectrometry and Nuclear Magnetic Resonance
(NMR) spectrometry [64]. Databases as such are believed to
greatly facilitate the translation of information into knowledge
for transforming clinical practice, particularly for metabolic-

Fig. 6. a) Evolution of the number of patents published in the area of mobile
health (source: European Patent Office); b) evolution of the number of smart-
phones sold per year in million units (source: Gartner); c) evolution of the cost
of Internet-enabled sensors in dollars (source: Business Intelligence Interna-
tional); d) number of mobile health apps published in Google play and iTunes
as of May 2015.

related diseases, such as diabetes and coronary artery diseases
[65]. In fact, metabolomics has emerged as an important re-
search area that does not only include endogenous metabolites
of the human body but also chemical and biochemical molecules
that can interact with the human body [66]. Specifically, on-
going efforts have been placed for fingerprinting metabolites
from food and nutrition products [67], drugs [68], and tradi-
tional Chinese medicine [69], as well as molecules produced
by the gut bacterial microbiota [67], [70]. These will eventually
help us to better understand the interaction between the host,
pathogen and environment.

The availability of the genomic, proteomic, and metabolic
databases allows a better understanding of the development of
complex diseases such as cancer. They also allow the search
of new biomarkers using different pattern mining and cluster-
ing techniques [68]–[71]. The clusters can be either partitional
(hard) or hierarchical (tree-like nested structure). These meth-
ods can be further accelerated by using multicore CPU, GPU,
and field-programmable gate arrays with parallel processing
techniques.

IV. SENSOR INFORMATICS

Advances in sensing hardware have been accelerating in
recent years and this trend shows no signs of slowing down
[72]. According to the analysis in the BI Intelligence report
(Garner) published at the end of 2014, the price of one MEMS
sensor has decreased by half from US$ 1.30 to US$ 0.60 dur-
ing the last decade as shown in Fig. 6. This has partly driven
a paradigm shift of future internet applications toward what
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§  Mobile	health1:	

§  Over	100,000	mobile	apps	in	the	iTunes	store	alone	(!)2	
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§  TradiAonal	methods	from	the	medical/health	domain:	
>  Cannot	handle	the	huge	amounts	of	data	

>  Are	hypothesis	driven	and	cannot	find	new	unexpected	results	

>  Cannot	cope	with	unstructured	data	

>  Do	not	allow	for	tailoring	therapies	towards	individuals	(personaliza0on)	

§  Machine	learning	can	help	here!	

§  My	research	is	devoted	to	development	of	machine	
learning	techniques	for:	
>  PredicAve	modeling	for	health	(predicAng	health	states)	

>  PersonalizaAon	for	health	(tailoring	intervenAons)	

MACHINE	LEARNING	FOR	HEALTH	
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§  Machine	learning:	
>  “Machine	learning	is	to	automaAcally	idenAfy	paZerns	from	

data”	

>  “A	computer	program	is	said	to	learn	from	experience	E	with	
respect	to	some	class	of	tasks	T	and	performance	P,	if	its	
performance	at	tasks	in	T	improves	with	E.”	(Mitchell)	

§  Data	Mining	(DM)	is	the	whole	process	from	data	to	
insights	(including	machine	learning	as	a	step)	

MACHINE	LEARNING	
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§  What	are	machine	learning	tasks?	
>  Supervised	learning	is	the	machine	learning	task	of	inferring	a	

funcAon	from	a	set	of	labeled	training	data		

>  In	unsupervised	learning,	there	is	no	target	measure	(or	label),	
and	the	goal	is	to	describe	the	associaAons	and	paZerns	among	
the	aZributes	

>  Reinforcement	learning	tries	to	find	opAmal	acAons	in	a	given	
situaAon	so	as	to	maximize	a	numerical	reward	that	does	not	
immediately	come	with	the	acAon	but	later	in	Ame.	

MACHINE	LEARNING	TASKS	
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§  Supervised	learning	approaches	learn	using	a	labeled	dataset:	
>  “Regular”	machine	learning	algorithms:	

SUPERVISED	LEARNING	

Patient Feature 1 ………… Feature p Target 

1 2 low yes 

2 6 medium no 

N 4 medium yes 

features 

in
st

an
ce

s 

Feature 1 

Feature 3 

yes no 

<2 

yes 

≥2 

low high 
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WHAT	STEPS	ARE	NEEDED	TO	APPLY	MACHINE	
LEARNING	SUCCESSFULLY11?	
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WHICH	STEP	TAKES	MOST	TIME?	

11	 Machine	Learning	for	Sensory	Data	–	Mark	Hoogendoorn	
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EXAMPLE	WEARABLES	DATASET	

§  Let	us	look	at	an	example	dataset	from	some	wearables	

12	 Machine	Learning	for	Sensory	Data	–	Mark	Hoogendoorn	
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EXAMPLE	WEARABLES	DATASET	

20 2 Basics of Sensory Data

Fig. 2.2: Processed CrowdSignals data (D t = 0.25 seconds)

(a) D t = 60 seconds (b) D t = 0.25 seconds

Fig. 2.3: Boxplots of all accelerometer data
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§  We	consider	the	following	loop3:	
	

HOW	DO	WE	LEARN	FROM	THIS	DATA?	

identification of 
noise and outliers 

(automated) 
identification of 

features 

clustering 
predictive 
modeling 

personalization 

(sensory) 
    data 

User 
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§  What	is	an	outlier?	
>  An	outlier	is	an	observaAon	point	that	is	distant	from	other	

observaAons	

§  Causes?	
>  Measurement	error	(a	person	with	a	heart	rate	of	400)	

>  Variability	(a	person	trying	to	push	his	limits	with	a	heart	rate	of	
190)	

	

NOISE	AND	OUTLIER	REMOVAL	
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§  Difference	between	measurement	and	variability	
outlier?	
>  Former	generated	by	another	mechanism	

§  How	to	remove?	
>  Domain	knowledge	(heart	rate	cannot	be	over	220)	

>  Without	domain	knowledge	(machine	learning	focus)	

§  Have	to	be	cau5ous	as	you	do	now	want	to	remove	
valuable	informaAon		

	

NOISE	AND	OUTLIER	REMOVAL	
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§  Lot	of	different	approaches:	
>  DistribuAon	based	(we	assume	a	certain	distribuAon	of	the	data)	

>  Chauvenet’s	criterion,	mixture	models,	…	

>  Distance	based	(we	only	look	at	the	distance	between	data	
points)	

>  Simple	distance	based,	local	outlier	factor,	…	

	

NOISE	AND	OUTLIER	REMOVAL	
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§  Example	outcome:	

	

NOISE	AND	OUTLIER	REMOVAL	

3.5 Case Study 41

(a) Chauvenet’s criterion (b) Mixture model (upper part shows the observed
values, bottom part shows the probability of ob-
serving the data)

(c) Simple distance-based approach (d) Local outlier factor (upper part shows the ob-
served values, bottom part shows the k-lof score)

Fig. 3.8: Outlier for the attribute acc phone x

In the figures we can see that Chauvenet’s criterion does signal outliers for the
light phone lux attribute: we find 33 outliers that seem to make sense. For the
acc phone x we do not find any outliers, and visual inspection indeed shows that
there are not very clear outliers. The mixture models seems to work fine for
light phone lux as well: extreme and rare values get a probability of observing of
around 0. For acc phone x we again do not see very clear outliers, a sign that very
obvious outliers are indeed missing. Our simple distance-based outlier detection
finds outliers for the two examples: we see some outliers for both cases (27 for
light phone lux and 11 for acc phone x). Finally, the local outlier factor does show
changes in values for outliers, but is in our opinion less clear compared to the sim-

42 3 Handling Noise and Missing Values in Sensory Data

(a) Chauvenet’s criterion (b) Mixture model (upper part shows the observed
values, bottom part shows the probability of ob-
serving the data)

(c) Simple distance-based approach (d) Local outlier factor (upper part shows the ob-
served values, bottom part shows the k-lof score)

Fig. 3.9: Outlier for the attribute light phone lux

pler distance-based approach. In addition, it is computationally more demanding.
Based on our observations, we have decided to apply a filtering of the outliers (re-
placing them with an unknown value) using the Chauvenet criterion: we want to be
on the safe now and not throw away data points for which it is not so obvious that
they are outliers. We apply this to all attributes except for the labels (that are just
binary and do not contain outliers). Of course using a single parameter across all
attributes has a severe risk which we are completely aware of, but visual inspection
showed that the outliers that were removed seemed fairly reasonable.

18	 Machine	Learning	for	Sensory	Data	–	Mark	Hoogendoorn	
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§  Example	dataset	we	have	now:	

§  Would	we	able	to	learn	properly?	
>  Nope,	we	need	beZer	features/variables!	

	

IDENTIFICATION	OF	FEATURES	

Acc. x  Acc. y Acc. z Activity 
-0.34 +3.45 -3.33 walking 
+3.12 +3.14 +3.14 walking 
-0.34 +0.34 0.45 walking 
+6.54 +0.45 -5.43 running 
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64 4 Feature Engineering based on Sensory Data

Fig. 4.4: Numerical temporal aggregation with different windows size (a windows
size of 20 resembles 5 seconds, 120 is 30 seconds, and 1200 is 5 minutes)

experimentation: we want to have a good number of patterns, but do not want to
get a lot of patterns that hardly occur. While these might seem a bit trivial, we do
feel they could be beneficial for predicting, e.g. running or walking a number of
time points could be predictive for the heart rate, and running some time ago could
also be (remember that a pattern occurs when it occurred at a time point within the
window size before). We will therefore include these in our dataset as well and study
the benefit of the newly created columns later on.

Table 4.4: k-patterns found in temporal abstraction

1-patterns (7) 2-patterns (10)

OnTable, Sitting, Walking, Stand-
ing, Driving, Eating, Running

OnTable (b) OnTable, Sitting (b) Sitting, Walking (b) Walking,
Walking (b) Standing, Walking (b) Driving, Standing (b) Walk-
ing, Standing (b) Standing, Driving (b) Driving, Eating (b) Eat-
ing, Running (b) Running

§  We	need	to	learn	based	on	paZerns	over	Ame	

§  E.g.	take	the	mean	or	SD	over	the	last	x	Ame	points	points	

	

IDENTIFICATION	OF	FEATURES	



Vrije Universiteit Amsterdam 

§  New	dataset	

	

IDENTIFICATION	OF	FEATURES	

Acc. x  
mean 

Acc. y mean Acc. z mean Activity 

Mean 
previous 3 + 
current time 
point 

Mean 
previous 3 + 
current time 
point 
 

Mean 
previous 3 + 
current time 
point 

running 
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§  We	need	to	learn	based	on	paZerns	over	Ame	

§  We	can	also	look	at	the	frequency	of	the	signal	(Fourier	tr.)	

	

	

IDENTIFICATION	OF	FEATURES	

66 4 Feature Engineering based on Sensory Data

Fig. 4.5: Frequencies with the aggregated features for the Fourier Transformation
combined with the labels

overlap	

window	

-me	

Fig. 4.6: Overlapping windows

4.5 Exercises

4.5.1 Pen and paper

1. We have seen several summarization functions that summarize numerical val-
ues within the time domain to a single number (i.e. mean, standard deviation,
minimum, and maximum). Provide an example for all four functions that shows
where that form of summarization can be useful.

2. Define at least two additional summarization function for numerical values in the
time domain and explain what their added value would be over the four we have
already defined in the book. Provide intuitive examples to illustrate your point.
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§  Let’s	apply	some	machine	learning	algorithms	

§  We	are	going	to	learn	how	to	predict	the	acAvity	based	on	
all	other	sensory	data	

§  We	are	going	to	set	aside	part	of	the	dataset	as	an	
independent	test	set	

§  How	accurate	would	we	be	able	to	predict	this?	
>  <	50%	

>  50	–	75%	
>  75	–	90%		
>  >	90%	

LEARNING	FROM	THIS	DATA	

23	 Machine	Learning	for	Sensory	Data	–	Mark	Hoogendoorn	



Vrije Universiteit Amsterdam 
24	 Machine	Learning	for	Sensory	Data	–	Mark	Hoogendoorn	

§  We	try	different	algorithms	(no	Ame	for	details,	sorry)	

LEARNING	FROM	THIS	DATA	

154 7 Predictive Modeling without Notion of Time

Fig. 7.14: Visualization of accuracy include confidence intervals

Fig. 7.15: The resulting decision tree using the selected features

Finally, we can explore where our algorithm tends to make mistakes (i.e. which
labels are confusing). The confusion matrix is shown in Table 7.16. We observe
a lot of high numbers on the diagonal, indicating a high accuracy. We do see that
the algorithm predicts a very limited number of cases incorrectly, washing hands
is classified as eating two times, while walking is predicted to be standing for two
times.

Original dataset 
 

With noise removed 
 

Temporal features 
 

With clusters 
 

Selection of features 
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§  Is	is	always	this	good?	

§  No,	definitely	not:	
>  Dataset	of	a	single	person	

>  Limited	Ame	

>  Limited	examples	of	acAviAes	

§  SAll,	an	accuracy	above	90%	is	typical	for	recognizing	
acAvity,	also	for	more	challenging	cases	

§  More	and	more	algorithms	do	not	require	the	idenAficaAon	
of	features,	but	learn	these	temporal	features	themselves	
>  E.g.	LSTM	(for	Long	Short	Term	Memory	Networks)	

LEARNING	FROM	THIS	DATA	
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PERSONALIZATION	

remove	noise	
(Ch.	3)	

generate	extra	
features		(Ch.	4/5)	

regular	predic=ons	
(Ch.	7)	

temporal	
predic=ons	(Ch.	8)	

x’t	 yt	 yt,…yt+n	St	

Agent	

User	

State	St	

Reward	Rt	

xt	

Ac0on	At	

St+1													xt+1	

Rt+1	

^	 ^	 ^	

history	
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CASE	STUDY:	DEPRESSION	

Ecological 
Momentary 
Assessment 
(EMA) 
•  Mood 
•  Sleep quality 
•  Social 

interactions 
•  …… 

Activities 

System usage 

Types of 
locations 
•  Social 
•  Sports 

Larger 
questionnaires 

Mobile intervention with various therapeutic modules 
(cognitive behavior therapy, activity scheduling, exercise therapy, etc.) 
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§  We	have	collected	the	following	data:	

	

§  49	paAents,	over	70	days	

§  Want	to	predict	mood	per	individual:	

CASE	STUDY:	DEPRESSION	

Fig. 1: Example of the process of selecting basic features given
a set of aggregation intervals to produce aggregated features.
Note that for attribute 2 and 4 the aggregated intervals are
specified for exemplary purposes.

taking the slope of a linear fit. Note that there are other
representations that can be interesting to use, such as with
min and max. For now we will use the aforementioned, but
we might add others in future research.

B. Feature testing strategy

Q

model

basic

features

aggregated

features

transformation

model

construction

model evaluation

Fig. 2: Overview testing strategy.

As depicted in Figure 2, to evaluate a set of aggregated
features a model needs to be constructed using these features.
The performance of the model on unseen data can then be
used to represent the fitness of the transformed features.
Subsequently the challenge is how to find the optimal set of
aggregated intervals, which can be solved using well suited
technology such as genetic algorithms [6].

IV. CASE STUDY

A. Dataset Description

We use a dataset from the EU project E-Compared [3].
Specifically, the data consists of ecological momentary assess-
ment measures (EMA, for more information see [10]). For 70
days 49 participants were asked to enter their mood, worry

and self-esteem ratings two times a day, and rating related
to sleep, activities done, enjoyed activities and social contact
once a day on a Likert scale with an interval of [1,10], using an
application on their mobile phone. This was part of a trial on
blended cognitive behaviour therapy for depression in which
psychologist used an online treatment program (available on
both smartphone and computer) in conjunction with face-to-
face visits. An overview of the EMA measures and their
corresponding questions are shown in Table I. These are
measured on a regular basis during the therapy. The mood
feature is the target feature that needs to be predicted. The
EMA data features are expected to have predictive value for
describing the mood over time.

TABLE I: EMA measures that are present in the dataset.

Abbreviation EMA question
Mood How is your mood right now?
Worry How much do you worry about things at the

moment?
Self-Esteem How did you sleep tonight?
Sleep How much have you enjoyed the day?s activities?
Activities done How good do you feel about yourself right now?
Enjoyed activities To what extent have you carried out enjoyable

activities today?
Social contact How much have you been involved in social

interactions today?

B. Exploratory Data Analysis

Of the total of 13083 questions, 3368 were not answered,
and are therefore missing values (25.7%). In Table II an
overview is given of the amount of missing data per feature.
Mood has the highest number of missing values, but was also
one of the questions that was asked most frequently.

In Figure 3 the percentage of missing values over time are
depicted. Clearly the further participants came in the trials,
the more questions were left unanswered. Because the last 2
days in the dataset show a sharp increase in missing data we
decided to exclude this part for further use. In Figure 4 it can
be seen that some participants did not actively participate in
the trial. We decided not to include the 7 participants that have
missing data higher than 60%, resulting in a dataset containing
42 participants with data over 68 days. The missing data that
was left in the data was filled by taking the average of the
last available data point earlier in time and the first available
data point later in time. If only one of these data points was
available we used that data point to fill the missing data.

TABLE II: Missing data per feature in the dataset.

Feature % of Missing Data
Mood 31%
Worry 36%
Self-Esteem 36%
Sleep 32%
Activities done 38%
Enjoyed activities 39%
Social contact 39%

Fig. 3: Percentage of missing data over time.

Fig. 4: Percentage of missing data per participant.

Note that we are considering depressed patients, that show
a huge variance in their rating, making the task interesting
and challenging. To exemplify this variance, an example of
the mood over time of participant 1 is depicted in Figure 5.

V. EXPERIMENTAL SETUP

In this section, we describe the setup to evaluate our
proposed approach using the dataset described above.

A. General setup

We aim to predict the mood rating at the next time point,
and all historical ratings are available to identify features. We
identify two conditions, namely our algorithm, referred to as
the experimental condition (EC) and a control condition (CC).

Fig. 5: Mood level of participant 1 over time.

In the EC we optimize the aggregation intervals per partic-
ipant, while in the CC we have fixed aggregation intervals
over all participants. To be able to compare the results from
the CC and the EC we use the following data strategy. For
each participant we divide the data into three datasets, namely
a training set, a validation set and a test set. We decided to
split up the 68 days of data for each participant in 40 days
for the training set, 14 days for the validation set and 14 days
for the test set. The training set is used by both the CC and
the EC to generate models for prediction, where the EC uses
the validation set to evaluate the suitability of the aggregated
features as part of its optimization algorithm. The test set is set
completely aside and only used to compare the performance of
the resulting models after the optimization has been finished.

The choice for the machine learning algorithm to generate
models (given a set of aggregated features) is extremely
important. Because we divide the already limited amount
of data in three separate parts problems like overfitting are
probable to occur. Also, because of the amount of missing
data we expect noise in the data, which effect the behavior and
performance of the different conditions, i.e. variance is present.
To counter overfitting problems we decided to use a bagging
approach (for more info, see e.g. citebreiman1996bagging).
More specifically, 20 models are fitted using a linear regression
approach on 20 random samples of 30 days from the training
set. To represent the model fit on the training set an average
mean squared error (MSE) over all samples. As the bagging
approach is stochastic, we ran the bagging approach 10 times.
This setup therefore generates 10 averaged MSE’s on the
training set during the fitting process, and, either 10 related
averaged MSE’s on the validation set, or 10 related averaged
MSE’s on the test set, during the prediction process. An
overview of this is displayed in Table III
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§  We	want	to	apply	the	same	approach	as	has	been	explained	before	
(summarize	the	data	over	days)	

§  What	window	size	is	opAmal?	We	try	to	find	this	per	measurement	

§  Learn	per	paAent,	within	the	windows	we	take	the	mean,	standard	
deviaAon,	and	the	trend	

§  We	perform	the	following	experiments:	

CASE	STUDY:	DEPRESSION	TABLE III: General setup of conditions per participant.

Condition Model Sample Size Nr Bags Nr Rounds Optimized
CC1 LR 30 of 40 20 10 no
CC2 LR 30 of 40 20 10 no
CC3 LR 30 of 40 20 10 no
CC4 LR 30 of 40 20 10 no
EC1 LR 30 of 40 20 10 yes
EC2 LR 30 of 40 20 10 yes

TABLE IV: Conditions specific setup per participant.

Condition Aggregation Intervals Solutions per Participant
CC1 < 1, 1, 1, 1, 1, 1 > Fixed
CC2 < 2, 2, 2, 2, 2, 2 > Fixed
CC3 < 3, 3, 3, 3, 3, 3 > Fixed
CC4 < 4, 4, 4, 4, 4, 4 > Fixed
EC3 Random Sampling Best of 300
EC4 Genetic Algorithm Best of 300

(10 gen * 30 pop)

For comparing the different conditions we compare each
participant’s 10 MSE’s on the training, validation and test
sets. Note that the validation set is not used by the control
conditions, but their scores on the validation set might still
provide insight, which we will describe in Section VI.

For the CC with fixed aggregation intervals, we select differ-
ent settings for the intervals. The options are displayed in Table
IV. For each CC subsequent we increase the fixed aggregation
interval by one day over all features. This way we can also
get a general impression about how these transformations
influence (or deteriorate) the predictive performance.

B. Experimental conditions per participant

As displayed in IV, we select two ECs which use an
optimization method for find high potential aggregation inter-
vals. For EC1 we use a random sampling method for finding
aggregation intervals, by generating 300 random solutions per
participant. The bandwidth of the random solutions is [1,2,3,4].
We purposely chose to keep the scale small to decrease the
chance of overfitting. For EC2 we run a genetic algorithm (see
e.g. [6]) using the R package GA [9] for 10 generations with a
population size of 30, with a crossover probability of 0.8 and
a mutation probability of 0.3. We use a binary representation
for the aggregation vectors of length 4. This means that the
aggregation interval also has a bandwidth of [1,2,3,4]. For each
EC and each participant we select the aggregation interval
vector that generates the lowest MSE on the validation set,
after which it is used to predict the mood on the test set.

VI. RESULTS

In this section we describe the results given the experimental
setup we have just described. First, we will study the control
and experimental conditions separately, followed a comparison
between the two.

A. Within control conditions

As described in Section V we have four control conditions
for each participant, namely CC1 to CC4 with four setups

TABLE V: The MSE and SD scores of the control conditions
and the experimental conditions on the training set, validation
set and test set. The prediction scores displayed here are the
averaged over the 10 rounds per participant and averaged over
participants.

Condition Training Set Validation Set Test Set
MSE SD MSE SD MSE SD

CC1 1.30 0.05 6.09 0.73 8.18 1.09
CC2 0.91 0.05 7.25 1.29 9.82 1.87
CC3 0.85 0.04 8.98 1.17 9.75 1.80
CC4 0.78 0.04 10.17 1.36 10.79 2.07
EC1 0.94 0.05 2.22 0.32 6.68 1.40
EC2 0.93 0.05 2.15 0.31 7.60 1.38

of fixed aggregation intervals over all participants. As can be
seen in the top four rows of Table V the MSE on the test set
generally gets worse as the window size increases. The same
trend can be seen for the MSE of the CC on the validation
set. On the training set the opposite seems to hold: increasing
window sizes are better, apparently the lengthier windows tend
to overfit the training data more.

When considering the standard deviation (SD) of the MSE
scores shown in the same table, the variance in the predictions
is quite low, indicating the prediction quality is robust. The
bagging approach likely contributed substantially to the found
low variance.

In Figure 6 all MSE prediction scores for each of the CC
are displayed. For the purpose of comparison the results are
sorted by MSE. CC1 especially excels in generating improved
low error predictions. For the harder predictions CC1 does not
seem to generate better results compared to the other fixed
window settings.

Fig. 6: The MSE prediction scores (42 participants, 10 rounds)
of the control conditions on the test set. The scores are sorted
by MSE.
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§  Results	(MSE):	

§  Becomes	significantly	beZer	

CASE	STUDY:	DEPRESSION	TABLE III: General setup of conditions per participant.

Condition Model Sample Size Nr Bags Nr Rounds Optimized
CC1 LR 30 of 40 20 10 no
CC2 LR 30 of 40 20 10 no
CC3 LR 30 of 40 20 10 no
CC4 LR 30 of 40 20 10 no
EC1 LR 30 of 40 20 10 yes
EC2 LR 30 of 40 20 10 yes

TABLE IV: Conditions specific setup per participant.

Condition Aggregation Intervals Solutions per Participant
CC1 < 1, 1, 1, 1, 1, 1 > Fixed
CC2 < 2, 2, 2, 2, 2, 2 > Fixed
CC3 < 3, 3, 3, 3, 3, 3 > Fixed
CC4 < 4, 4, 4, 4, 4, 4 > Fixed
EC3 Random Sampling Best of 300
EC4 Genetic Algorithm Best of 300

(10 gen * 30 pop)

For comparing the different conditions we compare each
participant’s 10 MSE’s on the training, validation and test
sets. Note that the validation set is not used by the control
conditions, but their scores on the validation set might still
provide insight, which we will describe in Section VI.

For the CC with fixed aggregation intervals, we select differ-
ent settings for the intervals. The options are displayed in Table
IV. For each CC subsequent we increase the fixed aggregation
interval by one day over all features. This way we can also
get a general impression about how these transformations
influence (or deteriorate) the predictive performance.

B. Experimental conditions per participant

As displayed in IV, we select two ECs which use an
optimization method for find high potential aggregation inter-
vals. For EC1 we use a random sampling method for finding
aggregation intervals, by generating 300 random solutions per
participant. The bandwidth of the random solutions is [1,2,3,4].
We purposely chose to keep the scale small to decrease the
chance of overfitting. For EC2 we run a genetic algorithm (see
e.g. [6]) using the R package GA [9] for 10 generations with a
population size of 30, with a crossover probability of 0.8 and
a mutation probability of 0.3. We use a binary representation
for the aggregation vectors of length 4. This means that the
aggregation interval also has a bandwidth of [1,2,3,4]. For each
EC and each participant we select the aggregation interval
vector that generates the lowest MSE on the validation set,
after which it is used to predict the mood on the test set.

VI. RESULTS

In this section we describe the results given the experimental
setup we have just described. First, we will study the control
and experimental conditions separately, followed a comparison
between the two.

A. Within control conditions

As described in Section V we have four control conditions
for each participant, namely CC1 to CC4 with four setups

TABLE V: The MSE and SD scores of the control conditions
and the experimental conditions on the training set, validation
set and test set. The prediction scores displayed here are the
averaged over the 10 rounds per participant and averaged over
participants.

Condition Training Set Validation Set Test Set
MSE SD MSE SD MSE SD

CC1 1.30 0.05 6.09 0.73 8.18 1.09
CC2 0.91 0.05 7.25 1.29 9.82 1.87
CC3 0.85 0.04 8.98 1.17 9.75 1.80
CC4 0.78 0.04 10.17 1.36 10.79 2.07
EC1 0.94 0.05 2.22 0.32 6.68 1.40
EC2 0.93 0.05 2.15 0.31 7.60 1.38

of fixed aggregation intervals over all participants. As can be
seen in the top four rows of Table V the MSE on the test set
generally gets worse as the window size increases. The same
trend can be seen for the MSE of the CC on the validation
set. On the training set the opposite seems to hold: increasing
window sizes are better, apparently the lengthier windows tend
to overfit the training data more.

When considering the standard deviation (SD) of the MSE
scores shown in the same table, the variance in the predictions
is quite low, indicating the prediction quality is robust. The
bagging approach likely contributed substantially to the found
low variance.

In Figure 6 all MSE prediction scores for each of the CC
are displayed. For the purpose of comparison the results are
sorted by MSE. CC1 especially excels in generating improved
low error predictions. For the harder predictions CC1 does not
seem to generate better results compared to the other fixed
window settings.

Fig. 6: The MSE prediction scores (42 participants, 10 rounds)
of the control conditions on the test set. The scores are sorted
by MSE.

B. Within experimental conditions

As described in Section V we have two experimental condi-
tions, namely EC1 where we use a random sampling optimizer,
and EC2 where we use a genetic algorithm optimizer to find
the best predictions on the validation set. In Table V EC1
on average performs better than EC2 on the test set. On
the training set and the validation set EC2 seems to have a
slightly lower MSE. Again, a low SD is seen. When we look
at Figure 7 we see that EC1 specifically performs better on
the prediction problems with higher errors, which explains the
relatively large difference in mean performance compared to
the EC2.

Fig. 7: The MSE prediction scores (42 participants, 10 rounds)
of the experimental conditions EC1 and EC2 and the best
performing control condition CC1 on the test set. The scores
are sorted by MSE.

To see why random sampling performs better, let us con-
sider the evolution of the fitness value with the number of
generations shown in Figure 8. We do see that the algorithm
seems to converge very fast. Better parameter settings would
likely have resulted in better performance. Due to the required
computation time, and the fact that this is not the main
contribution of the paper, we decided not to optimize the
setting further.

C. Control conditions versus experimental conditions

We want to know if better predictions are generated in the
EC compared to the CC given all predictions of all participants
(i.e. 42 participants times 10 repetitions). When we compare
the scores, the EC1 condition has the best accuracy on the
test set, following by EC2. In Table VI the results of a one-
sample Kolmogorov-Smirnov test (see [5]) are displayed that
compare all predictions of all participants. The results indicate
that the differences between the EC and CC are significant.
This finding is interesting, but does not yet shed light on the
differences between EC and CC on a patient level.

Fig. 8: The evolution of the population fitness for 10 gen-
erations within EC2. Example is taken for participant 30.
The fitness is expressed in -MSE, because this package only
maximises fitness.

TABLE VI: The one-sample Kolmogorov-Smirnov Test com-
paring the condition test set performances using the whole set
of predictions of all rounds of all participants, i.e. comparing
420 MSE prediction scores per condition. Displayed is the p-
value between each condition. To have significant difference
between conditions we need to satisfy p � value < 0.05.
Mark: ROUND NUMBERS

CC1 CC2 CC3 CC4
EC1 1.526e-06 < 2.2e-16 1.288e-15 < 2.2e-16
EC2 0.006486 1.45e-12 4.21e-09 < 2.2e-16

In Table VII one-sample Kolmogorov-Smirnov tests are
conducted for each participant. The results show that in 17 to
19 of the 42 participants EC1 and EC2 generated significantly
better results than CC1 given an alpha of 0.05.

For CC2 to CC4 the number of significant differences gen-
erally increase. The fact that not more significant differences
are found is most likely due to the small sample size. Other
factors that play a role are the quality of the data and amount
of data available per individual.

Based on the results we can conclude that the sets of
aggregated features found by the EC have higher predictive
capabilities.

D. Individual example predictions

Next to the higher level comparisons between conditions, it
is interesting to look at the implications on a practical level.
For this purpose we compare CC1 and EC2 for participant 16
and participant 36. These are representative examples. The fit
on the training set, the prediction on the validation set and
the prediction on the test set for participant 16 are depicted in
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§  Example	paAent:	

CASE	STUDY:	DEPRESSION	

TABLE VII: The one-sample Kolmogorov-Smirnov Test com-
paring the condition test set performances per individual set
of predictions, i.e. comparing 10 MSE prediction scores for
42 participants. Displayed is the number of cases that for a
participant p� value < 0.05 between conditions.

CC1 CC2 CC3 CC4
EC1 17/42 24/42 24/42 25/42
EC2 19/42 23/42 18/42 24/42

Figure 9, and for participant 36 are depicted in Figure 10. The
examples show that the predictions for the independent test set
are quite reasonable for the EC2, especially considering the
fact that the problem we are facing in general is known to be
notoriously difficult. For the CC1 the models seem to describe
the trends less well. A comparison on the validation set is not
fair as the EC2 exploits the performance on the validation set
to optimize the fitness values.

Fig. 9: The fit on the training set, prediction on the validation
set, and the prediction on the test set (top to bottom) of
CC1 (left) and EC2 (right) for participant 16. Specifically the
models in the 6th round generated these fits and predictions.

VII. DISCUSSION

In this paper we proposed and tested a feature learning
method for temporal predictive models. We have evaluated the
approach using data from the domain of e-health, specifically

Fig. 10: The fit on the training set, prediction on the validation
set, and the prediction on the test set (top to bottom) of
CC1 (left) and EC2 (right) for participant 36. Specifically the
models in the 2th round generated these fits and predictions.

depression. Significant differences were found on the predic-
tion task between each of the CC and EC: the EC outperforms
the CC.

The feature learning method automates a part of the pre-
processing stage when using temporal data. In each prediction
task many decisions need to be made about how to prepare
the data that is fed to the predictive model. Among such
choices is the decision about the time window to consider
for temporal attributes. Often it is unclear what the right time
windows is. Data practitioners therefore go with their intuition.
Also, the emphasis is often on other parts of the prediction
process, such as which model is best suited. By automating
this preprocessing using the proposed method in combination
with an optimizer, better representation can be generated, that
increase the predictive accuracy.

The method is well suited to be employed in the e-health
domain, because new technologies are used that measure a
flurry of information in a temporal fashion, such as information
related to mental health, physical health, or geographic infor-
mation. Little research is done about how such features relate
to the target of the prediction. Also, such relations are often
highly personal and do not generalize well across patients.
Therefore, it is interesting to exploit the proposed method

TABLE VII: The one-sample Kolmogorov-Smirnov Test com-
paring the condition test set performances per individual set
of predictions, i.e. comparing 10 MSE prediction scores for
42 participants. Displayed is the number of cases that for a
participant p� value < 0.05 between conditions.

CC1 CC2 CC3 CC4
EC1 17/42 24/42 24/42 25/42
EC2 19/42 23/42 18/42 24/42

Figure 9, and for participant 36 are depicted in Figure 10. The
examples show that the predictions for the independent test set
are quite reasonable for the EC2, especially considering the
fact that the problem we are facing in general is known to be
notoriously difficult. For the CC1 the models seem to describe
the trends less well. A comparison on the validation set is not
fair as the EC2 exploits the performance on the validation set
to optimize the fitness values.

Fig. 9: The fit on the training set, prediction on the validation
set, and the prediction on the test set (top to bottom) of
CC1 (left) and EC2 (right) for participant 16. Specifically the
models in the 6th round generated these fits and predictions.

VII. DISCUSSION

In this paper we proposed and tested a feature learning
method for temporal predictive models. We have evaluated the
approach using data from the domain of e-health, specifically

Fig. 10: The fit on the training set, prediction on the validation
set, and the prediction on the test set (top to bottom) of
CC1 (left) and EC2 (right) for participant 36. Specifically the
models in the 2th round generated these fits and predictions.

depression. Significant differences were found on the predic-
tion task between each of the CC and EC: the EC outperforms
the CC.

The feature learning method automates a part of the pre-
processing stage when using temporal data. In each prediction
task many decisions need to be made about how to prepare
the data that is fed to the predictive model. Among such
choices is the decision about the time window to consider
for temporal attributes. Often it is unclear what the right time
windows is. Data practitioners therefore go with their intuition.
Also, the emphasis is often on other parts of the prediction
process, such as which model is best suited. By automating
this preprocessing using the proposed method in combination
with an optimizer, better representation can be generated, that
increase the predictive accuracy.

The method is well suited to be employed in the e-health
domain, because new technologies are used that measure a
flurry of information in a temporal fashion, such as information
related to mental health, physical health, or geographic infor-
mation. Little research is done about how such features relate
to the target of the prediction. Also, such relations are often
highly personal and do not generalize well across patients.
Therefore, it is interesting to exploit the proposed method
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INTEGRATE	PREDICTIONS	IN	SYSTEM	

§  We	have	developed	an	approach	for	depression	(knowledge	
driven	personalizaAon):	

	
	
	
	
	
	

Therapeutic modules

Reasoning System
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WE	PROVIDE	TAILORED	FEEDBACK	

§  Reasoning	module:	

	
	
	
	
	
	

reasoning
system

data
abstraction

virtual	patient

sensor	data evaluation

communication
generation

assessed	states
and		detailed	data

evaluation	of	therapy

messages
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PERSONALIZATION/FEEDBACK	

§  CommunicaAon	generaAon:	send	appropriate	feedback	

§  Types	of	feedback:	
>  Feedback	to	the	paAent		

>  InformaAon	permanently	available	via	the	website	

>  Direct	informaAon	via	mobile	phone	

>  Reminders	for	therapeuAc	acAviAes 		

>  MoAvaAonal	messages	(based	on	predicAve	models)	

>  Weekly	feedback	about	progress	(based	on	predicAve	models)	

>  TherapeuAc	advice	(based	on	predicAve	models)	

>  Feedback	to	GP	
>  Permanently	available	via	website	

>  SuggesAons	about	therapy	change	(based	on	predicAve	models)	

>  Warning	in	case	of	very	low	mood	levels	
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SUMMARY	

§  Machine	Learning	for	Health	poses	a	lot	of	challenges	to	
generate	accurate	models	

§  Wearables	pose	interesAng	challenges	to	create	accurate	
predicAve	models	

§  Feature	engineering	is	crucial	for	some	case	

§  PersonalizaAon	is	the	next	step	

§  Lots	of	developments	seen	now	that	focus	on	end-to-end	
learning,	but:	lack	of	insight	
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